On the Block Structure of Singular Group Divisible Designs
نویسندگان
چکیده
منابع مشابه
Group divisible designs with block size four and two groups
We give some constructions of new infinite families of group divisible designs, GDD(n, 2, 4; 1, 2), including one which uses the existence of Bhaskar Rao designs. We show the necessary conditions are sufficient for 3 n 8. For n= 10 there is one missing critical design. If 1> 2, then the necessary conditions are sufficient for n ≡ 4, 5, 8 (mod 12). For each of n=10, 15, 16, 17, 18, 19, and 20 we...
متن کاملSplitting group divisible designs with block size 2×4
The necessary conditions for the existence of a (2 × 4, λ)-splitting GDD of type g are gv ≥ 8, λg(v−1) ≡ 0 (mod 4), λg2v(v−1) ≡ 0 (mod 32). It is proved in this paper that these conditions are also sufficient except for λ ≡ 0 (mod 16) and (g, v) = (3, 3).
متن کاملConcerning cyclic group divisible designs with block size three
We determine a necessary and sufficient condition for the existence of a cyclic {3}-GDD with a uniform group size 6n. This provides a fundamental class of ingredients for some recursive constructions which settle existence of k-rotational Steiner triple systems completely.
متن کاملModified group divisible designs with block size four
The existence of modiied group divisible designs with block size four is settled with a handful of possible exceptions.
متن کاملUniform Group Divisible Designs with Block Sizes Three and n
The existence of group divisible designs of type gt with block sizes three and n, 4 n 10, is completely settled for all values of g and t.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematical Statistics
سال: 1966
ISSN: 0003-4851
DOI: 10.1214/aoms/1177699284